Wyoming, UW Finish Collecting Cloud Seeding Statistical Information

April 4, 2014 — A cloud-seeding research project originally commissioned by the state of Wyoming nearly a decade ago and involving the University of Wyoming has been completed — at least on the statistical gathering front. Now, it’s time to crunch the collected data before results are presented to state legislators at the end of this year.

The compiled data should help to answer the $100,000 question: Does cloud seeding work or not?

“Wyoming contracted with a cloud seeder (Weather Modification Inc.) and a seeding evaluation contractor,” says Terry Deshler, a UW professor in the Department of Atmospheric Science and a member of the project’s Technical Advisory Committee. “The goal was to run a scientifically credible experiment with an evaluator to statistically test the effect of cloud seeding. That’s been an experiment going on now for eight years. Now, we go into data quality control and the analysis phase.”

With the data collection phase completed, actual results — now being compiled for verification and testing by scientists and statisticians with the National Center for Atmospheric Research (NCAR) — will not be made publicly available until December, when a final report is given to Wyoming’s legislators and a scientific paper is submitted for publication.

“We have a rough outline. We don’t know the results,” Deshler says. “NCAR will be leading the paper, and all funded partners will be writing pieces of the report. Other experts and I will review the paper and the report. Barry Lawrence (project director for the Wyoming Water Development Office) will see everything. We will not be talking to people about this prematurely.”

The Wyoming Weather Modification Pilot Project (WWMPP), which began in 2006-07, technically was set to conclude at the end of April 2014. However, the cloud-seeding project was halted April 2 due to above-average snowpack (120 percent of the 30-year average) in the mountains of southern Wyoming. The Wyoming Water Development Office made the decision as a precautionary measure against exacerbating the potential of spring flooding.

“We don’t want to exacerbate anything that could be coming down the road,” Lawrence says in recent media reports. “It’s not worth continuing on, so we’re pulling the plug.”

Before the decision to halt the project, Deshler says it was possible a few more cloud-seeding experiments could have been conducted this month, if snow conditions were ideal.

Planting the seeds

In 2005, the Wyoming State Legislature approved a five-year weather modification study administered by the Wyoming Water Development Office. The state-funded program is designed to evaluate the effectiveness of cloud seeding, a form of artificial weather modification, with silver iodide to enhance snowfall from winter orographic storms in the Medicine Bow and Sierra Madre mountains. Such storms occur when an air mass is forced from a low elevation to a higher one as it moves over rising terrain.

Due to water shortages and droughts in some states and in countries around the world, cloud seeding is seen as a potential way to increase water supplies for communities and to irrigate crops. Cloud seeding typically is paid for by water resource managers, power companies (hydropower) and agricultural interests.

“This experiment by the state of Wyoming is the first statistically valid experiment that has been run in the U.S. on cloud seeding since the 1960s to the ‘70s,” Deshler says. “People gave up (after that time period) because of the amount of time required to do cloud-seeding experiments.”

Deshler is a co-writer of a paper, titled “Evaluating Winter Orographic Cloud Seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP),” that was published in the February issue of the Journal of Applied Meteorology and Climatology.

The paper compiles the parameters set forth in advance for the Wyoming cloud-seeding study.

“As a scientist, you want to say at the beginning how you plan to run your project,” Deshler says. “It lends the project credibility.”

Precipitation in winter orographic storms generally develops when ice crystals form and grow on natural ice nuclei, such as dust particles. In many storms, the lack of natural ice nuclei active at warmer temperatures results in an inefficient precipitation process. In addition, weak updrafts in these clouds and narrow cloud droplet distributions limit the impacts of any ice processes to multiply.

During cloud seeding, silver iodide is released into the clouds through generators that were strategically placed upwind of the ridges of the Medicine Bow and Sierra Madre mountains in southern Wyoming. The silver iodide facilitates ice crystal formation in super-cooled water clouds.

Testing period

Randomized cloud seeding began during 2008-09, with the seeding period running from Nov. 15 through April 15 each year. Since the project started, the Legislature has twice funded two-year extensions to the original five-year appropriation because the number of cloud-seeding experiments was not sufficient to reach statistically significant conclusions for the WWMPP, Deshler says.

The original expectation was to run 65-70 four-hour experiments during the seeding period for each year. However, based on conditions ripe for cloud seeding, experiments each season numbered in the 25-30 range, Deshler says. Over the course of six years, that would mean 150-180 experiments were conducted.

“Is that enough (experiments) if we assume some change?” Deshler asked rhetorically. “That depends on the magnitude of the effect. Small changes will limit the confidence we have in the result because of the large variability in natural snowfall. An effect of 10 percent may be difficult to substantiate with confidence, based on the number of experimental cases. But, let’s wait until the data are analyzed later this year.”

“After we analyze all the data, we’ll get a distribution of effects that gives us a mean,” he adds. “That mean is the overall result of this experiment. Along with the mean, we will have a statistical confidence in the validity of the mean. We had hoped to achieve 95 percent confidence initially. Now, we’re not sure it will be that high. But that depends on the data we have. So, we’ll see.”

Initially, the Medicine Bow and Sierra Madre ranges were going to be treated independently relative to cloud seeding decisions, with results to be pooled for statistical evaluation. However, numerous factors suggested storm conditions and precipitation would be far from independent in the two ranges, Deshler says.

There was a correlation of about 50 percent between the ranges for all storms, which affected snowfall. This correlation made pooling more difficult, as many experiments in the two mountain ranges would not be independent.

As a result, the researchers decided to design an experiment using a randomized cross-over design. Using the two cloud-seeding target areas, paired data can be produced that is more efficient and decreases sample size. Sticking with a single-target design for each area could require 15 or more years of data, Deshler says.

“We don’t have that kind of time or funding,” he says.

During each experiment, a buffer period up to four hours following cloud seeding was used, according to the research paper. The buffer period was used to guard against contamination, meaning researchers wanted time to determine whether seeding material may inadvertently affect precipitation in an area considered to be unseeded.

The cloud-seeding estimates are highly dependent on the expected effect of seeding, on correlations between the two mountain ranges and between the target and control sites, and on the variance of precipitation.

The paper’s other co-writers are Roy Rasmussen, senior scientist and deputy director of NCAR’s Earth and Sun Systems Laboratory; Daniel Breed and Courtney Weeks, both with the title of associate scientist II in NCAR’s Research Applications Laboratory; and Bruce Boe, director of meteorology of Weather Modification Inc., a Fargo, N.D.-based cloud-seeding company.

Source: http://www.uwyo.edu/uw/news/2014/04/wyoming-uw-finish-collecting cloud seeding statistical-information.htm

Check out the latest investigations on The Dick Clippings.


More airplanes needed for weather modification in Indonesia: BPPT

More airplane needed for weather modification in Indonesia: BPPT Wed, March 26 2014 19:05

Jakarta (ANTARA News) – The Agency of Assessment and Application of Technology (BPPT) required at least 15 airplane to optimally implement the weather modification technology across Indonesia, an official said here on Wednesday.

“We now have only five airplane, three of which are available for weather modification. The other two are rented out for pioneer flight service,” Head of the Technical Management Unit of Artificial Rain of the BPPT Heru Widodo said here at a press conference on Wednesday.

According to Widodo, the weather modification technology should cover all the regions in Indonesia, which are divided into western, central and eastern.

Five airplane per region was enough for optimal weather modification in the region, Widodo said.

“Four aircraft are on standby for operations, while one or two is used for research,” he added.

Unfortunately, BPPT only has five airplane currently, four Casa C-212 and one Piper Cheyenne.

The Agency had to rent out two of their planes due to the high cost of maintenance, Widodo said.

Therefore, Widodo added that weather modification technology implementation in Indonesia was way behind Thailands.

The government of Thailand, according to him, has 24 airplane spread among five task force across the country.

Thailand has been frequently conducting weather modification not only to prevent natural disasters, but also to maintain its water supply and agriculture sector, Widodo said.

The BPPT had proposed procuring seven additional airplane, estimated to cost Rp500-600 billion (around 45 million US Dollar), to support the weather modification task force, Widodo remarked.

The proposed seven airplane consists of Cassas: CN 235, C-212 and N-219.

“It depends on the government policy, we already have the technology. If we can combine the two, it is hoped that food, energy and disaster related issues can be reduced in Indonesia,” Widodo said.

Weather modification technology has been widely used to avert floods in Jakarta and several regions in Java and also to reduce hotspots or forest fires in Sumatra and Kalimantan islands.

Meanwhile, a researcher of the Science and Atmosphere Technology Center of The National Aeronautics and Space Agency (LAPAN), Didi Satiadi, said Indonesia had extreme meteorology.

Most of the disasters in the country were hydro-meteorological disasters, which were caused by heavy rain, floods, landslides, whirlwind and droughts. However, the geologic disasters were responsible for the largest number of victims.

Science and technology can be applied to mitigate disasters, such as for understanding and predicting extreme weather.

“Furthermore, technology can be used to create an Indonesia that is weather-ready,” he said.

(Reporting by Aditya EX Wicaksono/INE/KR-BSR/H-YH)

Editor: Priyambodo RH

source: http://www.antaranews.com/en/news/93378/more-airplane-needed-for-weather-modification-in-indonesia-bppt

Check out the latest investigations on The Dick Clippings.

Photo of Indonesian Air Force installing Weather Modification equipment to prevent heavy rains

The Jakarta Post | | Wed, January 15 2014, 3:03 AM

Indonesian Air Force members prepare weather modification equipment inside a Hercules aircraft at Halim Perdanakusuma Airport in Jakarta on Tuesday. The Air Force in cooperation with the National Disaster Mitigation Agency (BNPB) and the Agency for the Assessment and Application of Technology (BPPT) are working together to prevent heavy rain, which has inundated several areas in Greater Jakarta. (JP/Wendra Ajistyatama)

weather modification
Weather men: Indonesian Air Force members prepare weather modification equipment inside a Hercules aircraft at Halim Perdanakusuma Airport in Jakarta on Tuesday. The Air Force in cooperation with the National Disaster Mitigation Agency (BNPB) and the Agency for the Assessment and Application of Technology (BPPT) are working together to prevent heavy rain, which has inundated several areas in Greater Jakarta. (JP/Wendra Ajistyatama)
source: thejakartapost.com

Indonesia starts cloud-seeding to fight smog

Indonesia attempts to put out blazes and probes plantation firms suspected of starting the fires

PUBLISHED : Sunday, 23 June, 2013, 1:42pm
UPDATED : Monday, 24 June, 2013, 5:31am

Indonesia has begun seeding clouds in an attempt to create rain to put out blazes that have choked Singapore and Malaysia with smog, officials said, while launching investigations into plantation firms suspected of starting the fires.

The pollution index dropped to moderate in Singapore yesterday after having hit hazardous levels but the smog intensified in Malaysia, with its government declaring a state of emergency in two southern districts.

An aircraft with cloud-seeding equipment managed to unleash rain over Bengkalis district on Sumatra island, where some of the biggest fires are raging, said Indonesian disaster management agency official Agus Wibowo.

Indonesian police said they were probing eight companies with possible Malaysian links that are suspected of starting the fires, a day after environment group Greenpeace said the blazes were on palm oil plantations owned by Indonesian, Malaysian and Singaporean firms.

In Indonesia’s Riau province, police spokesman Hermansyah said: “They are suspected to be Malaysian.

“It’s a very serious crime. Fire-starters can be jailed and companies can be sued. They usually do it at night in remote locations, making it difficult for us to trace them. But we will do our best to pin them down.”

Wibowo said the pollution standards index in Riau, where the fires are burning, exceeded the hazardous 400 level in several areas. Three helicopters also dropped water to douse fires on hundreds of hectares of carbon-rich peatland that have engulfed neighbouring Singapore and Malaysia in smog.

Malaysian Environment Minister G. Palanivel said the air pollutant index (API) hit 750 in the town of Muar – a 16-year high – early yesterday, with two other towns also reaching hazardous levels.

“The prime minister has signed a declaration of emergency for Muar and Ledang districts,” Palanivel said.

The highest ever API reading was 860 during the 1997-1998 haze crisis that gripped the region. Hundreds of schools have been closed since Thursday in Muar, which has a population of about 250,000.

Many Malaysians have begun wearing masks as a precaution as the pollution levels have climbed.

Malaysia’s API indicated that the capital Kuala Lumpur was also experiencing unhealthy air which had limited visibility to just one kilometre, according to Palanivel.

The annual haze problem is blamed by Indonesia’s neighbours for affecting tourism and public health. The haze hit its worst levels in 1997-1998, costing Southeast Asia an estimated US$9 billion from disruptions to air travel and other business activities.

source: scmp.com